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SUMMARY

Protein structure determination and predictive
modeling have long been guided by the paradigm
that the peptide backbone has a single, context-inde-
pendent ideal geometry. Both quantum-mechanics
calculations and empirical analyses have shown this
is an incorrect simplification in that backbone cova-
lent geometry actually varies systematically as a
function of the F and J backbone dihedral angles.
Here, we use a nonredundant set of ultrahigh-resolu-
tion protein structures to define these conformation-
dependent variations. The trends have a rational,
structural basis that can be explained by avoidance
of atomic clashes or optimization of favorable elec-
trostatic interactions. To facilitate adoption of this
paradigm, we have created a conformation-depen-
dent library of covalent bond lengths and bond angles
and shown that it has improved accuracy over
existing methods without any additional variables to
optimize. Protein structures derived from crystallo-
graphic refinement and predictive modeling both
stand to benefit from incorporation of the paradigm.

INTRODUCTION

Structural details at the 0.1 Å scale guide our understanding of

enzyme catalysis, how mutations cause disease, and what

makes a good inhibitor and potential drug. Since the work of

Pauling et al. (1951), protein model building at all levels has

been guided by the assumption that the peptide backbone has

a certain ideal geometry independent of context (Figure 1).

This paradigm underlies the restraints used to guide protein

structure refinement (e.g., Evans, 2007) and is also the basis of

the rigid-geometry approximation used to simplify model building

in the most successful structure-prediction packages such as

Rosetta and I-TASSER (Rohl et al., 2004; Zhang, 2009). The

rigid-geometry approximation uses fixed bond lengths and

angles, leaving torsion angles as the only variables needed to

define the structure. Ideal target values for the peptide backbone

have varied little over the years, and a set of values most recently

updated in 1999 (EH; Engh and Huber, 1991; Engh and Huber,

2001) is commonly used (Figure 1).

Experimentally derived crystal structures at all but the highest

resolutions reflect the influence of the single-value ideal-geom-
1316 Structure 17, 1316–1325, October 14, 2009 ª2009 Elsevier Lt
etry paradigm that is applied in the form of geometric restraints.

However, strong evidence exists that this paradigm is flawed.

Quantum-mechanics calculations and empirical analyses of

high-resolution protein structures from over a decade ago sug-

gested that the concept of a single, context-independent ideal

value for backbone bond angles and lengths was wrong (Schäfer

and Cao, 1995; Karplus, 1996). Instead, both approaches

showed that backbone covalent geometry varies systematically

as a function of the conformation of the backbone torsion angles.

The systematic conformation dependence of ideal geometry

was most notable for the N-Ca-C bond angle (:NCaC) that

varied by 8.8�, from 105.7� to 114.5� (Karplus, 1996). Similarly,

systematic distortions of geometry are known to occur for clas-

sically disallowed but experimentally observed conformations

(e.g., Gunasekaran et al., 1996; Ramakrishnan et al., 2007).

And finally, particularly intriguing has been the observation that

at increasingly higher resolution, protein structures are in

progressively worse agreement with the supposedly ‘‘ideal’’

values (e.g., Longhi et al., 1998). This observation resulted in

a recent literature debate about how to adjust the target values

used for geometric restraints and how heavily to weight them

(Jaskolski et al., 2007a; Tickle, 2007; Jaskolski et al., 2007b;

Stec, 2007). We contributed to this debate with the suggestion

that the root of the problem is not simply a matter of incorrect

ideal target values or weights, but instead is a matter of an incor-

rect paradigm in that ideal geometry should be a function, not

a single value (Karplus et al., 2008).

With the explosion of protein structures solved at 1.0 Å resolu-

tion or better, the time is ripe to extend the earlier analysis (Kar-

plus, 1996) and more accurately determine the nature and extent

of the systematic variations of peptide geometry with conforma-

tion. To accomplish this, we created a nonredundant database

of atomic-resolution structures that has nearly 20,000 residues.

Here, we use this database to analyze conformation-dependent

trends in backbone geometry in all bond angles and lengths.

We also show that accounting for these trends has the potential

to improve both crystallographic refinement and homology

modeling.

RESULTS AND DISCUSSION

Data Source and Analysis Strategy
To accurately characterize the nature and extent of conforma-

tion-dependent variations in geometry, we used a data set of

16,682 well-defined 3-residue segments from 108 diverse

protein chains determined at 1.0 Å resolution or better (see

Experimental Procedures). A 3-residue segment includes all of
d All rights reserved
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Figure 1. Evolution of the Ideal Values for Backbone Geometry Used in the Single-Value Paradigm

A central residue (residue 0) is shown with atoms from residues �1 and +1 that contribute to its two adjacent peptide units. For each of the seven bond angles

associated with residue 0, three ideal values from earlier work are shown from oldest (top) to most recent (bottom). They are from Corey and Donohue (1950),

Engh and Huber (1991), and Engh and Huber (2001). Most refinement and modeling programs use one of the Engh and Huber sets or a slight variation on them.

Rotatable bonds defining the backbone torsion angles F and J are indicated. Figure created with Inkscape.
the atoms in two complete peptide units, and the data set

included the bond lengths and bond angles for the peptide units

uniquely identified by whether they mostly involve atoms from

residue �1, 0, or +1 in the 3-residue segment (Figure 1). Based

on previous work (Karplus, 1996) indicating distinct geometric

behavior of Gly, Pro, the b-branched residues Ile and Val (Thr

behaves more like a general residue because of stabilizing

sidechain-backbone hydrogen bonds), and residues preceding

proline (pre-Pro), we carried out separate statistical analyses

for those five groups. The data set used here included 1,379

Gly, 639 Pro, 511 general pre-Pro (644 before exclusion of

Gly/Pro/Ile/Val), 1,822 Ile/Val, and 10,921 general residues (the

16 other residue types taken together). All pre-Pro residues are

excluded from the other classes. As seen in Figure 2, these resi-

dues were distributed in F,J as has been seen for many well-

filtered data sets (Karplus, 1996; Kleywegt and Jones, 1996,

Lovell et al., 2003). Figure 2 also provides the shorthand nomen-

clature we will use for certain regions of the Ramachandran plot.

We analyzed these results to visualize and to document the

F,J-dependent variations in bond lengths and angles. Our

approach was to use kernel-regression methods to smooth the

data and to produce continuously variable functions for each

parameter (see Experimental Procedures). The figures and

tables in this paper are based on the kernel-regression analysis

and only include regions of the Ramachandran plot having an

observation density of at least 0.03 residues/degree2 (i.e., 3 resi-

dues in a 10� 3 10� area) and a finite standard error of the mean.

Ubiquitous, Systematic, F,J-Dependent Variations
Exist in Peptide Geometry
Bond Angles

The data reveal that for general residues, all 15 bond angles in

the two peptides adjacent to the central residue vary systemat-

ically with F and J (Figure 3 and Table 1). The most prominent

observation is that the variations do not occur only in rare outlier

conformations, but they occur throughout even the most popu-

lated areas of the plot for all residue types (Figure 3; see Figures

S1–S4 available online). Consistent with the lower-resolution
Structure 17, 1316–
analysis (Karplus, 1996), :NCaC varies the most (6.5�), but

four other angles also vary by R 5�. An important difference

from the results of the earlier study is that the conformation-

dependent standard deviations of the bond angles are about

half what was seen previously (Karplus, 1996), ranging from

1.3�–1.8� (Table 1). These are also substantially smaller than

the standard deviations of �2.5� used for the single ideal values

defined by Engh and Huber (1991) based on small-molecule

structures. It is notable that ultrahigh-resolution crystal struc-

tures are generally refined using geometric restraints that do

not match the local averages, so the narrow (small s) distribu-

tions cannot be an artifact of the restraints used. Interestingly,

the variations in the averages are 2–4 times the standard devia-

tions (Table 1), implying that current modeling restraints would

work to wrongly pull angles away from their actual optimal values

in many regions. Dramatically, the distributions at the extremes

can even be completely nonoverlapping because of the small

standard deviations (Figure 4). The standard errors of the F,J-

dependent means (i.e., s/ON) for bond angles are less than

0.5� in nearly all regions and typically less than 0.2� in the highly

populated regions (Figures S5–S9)—however, errors should be

considered when examining averages for the lowest-populated

edges and other regions, such as the pre-Pro region for general

residues. In comparison, the 2�–7� ranges seen for the expected

values are 10–50 times greater than their uncertainties. This

shows that the variations are well-determined and backbone

geometry in no way obeys the single ideal value paradigm.

Bond Lengths

In the 1996 study, the resolution of the data did not allow reliable

visualization of bond-length variations. Here at atomic resolu-

tion, systematic F,J-dependent trends are now visible in bond

lengths (Figure 5) but the variation ranges (0.01–0.02 Å) are

only on par with the standard deviations (0.012–0.016 Å),

meaning the distributions are highly overlapping. The standard

errors of the mean are smaller (�0.002 Å), so the variations in

the means seen are nevertheless significant (�10-fold larger).

Given that the standard deviations are on par with the expected

coordinate accuracy, we hypothesize that the true underlying
1325, October 14, 2009 ª2009 Elsevier Ltd All rights reserved 1317
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bond lengths are distributed more narrowly and thus will require

still higher resolution analyses to determine accurately. Because

of this limitation and the expectation that, because of the very

small distances involved, the bond-length variations will have

little impact on modeling accuracy, we will not further describe

the bond-length trends here. Nevertheless, we suspect the vari-

ations involved will be chemically informative (e.g., Esposito

et al., 2000; Figure 5).

Variations Are Correlated with Local Interactions
Comparison of conformation-dependent trends across the two

sequential peptide units reveals that the trends are largely locally

influenced. For each of the seven angles associated with the

central residue, the range is larger than the range for the same

angle associated with the previous or subsequent residue (Table

1). For instance, :N-1Ca-1C-1 and :N+1Ca+1C+1 have ranges of

5.5� and 3.0�, whereas :NCaC has a range of 6.5�. This implies

that the angles in Table 1 associated with residues �1 and +1

show highly local effects, being more influenced by the F,J

values of their respective residues than the F,J values of residue

0 (the central residue). For modeling purposes, it makes sense to

assign the ‘‘ideal’’ target values for all seven of these angles

based on F,J of the central residue.

Furthermore, among these seven angles, additional evidence

of the dominance of local effects is seen as each angle is

influenced mostly by the single closest torsion angle, whether it

is F or J (Figure 3). Starting at the N-terminal end, :C-1NCa is

heavily F-dependent as is seen in the vertical pattern of variation,

then the Ca-centered angles are a mixture, displaying diagonal

patterning, and the angles at the C-terminal end, such as

:CaCN+1, have J-dependent horizontal patterning. Even

Figure 2. Protein Backbone Conformations of Non-Gly Residues

This Ramachandran plot is colored by empirical observation counts in atomic-

resolution proteins. Labels indicate regions of particular interest (Karplus,

1996; Lovell et al., 2003; Hollingsworth et al., 2009). Coloring uses a logarithmic

function to allow lower- and higher-population regions to be seen simulta-

neously. Observation density was calculated using kernel regressions (see

Experimental Procedures). Unlabeled versions of this plot and another for

only Gly residues are available as supplementary material (Figures S12 and

S13). Figure generated with Matlab and edited with Inkscape.
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among the Ca-centered angles, :NCaCb shows enhanced

dependence on F and :CbCaC shows enhanced dependence

on J. This extreme locality agrees with much prior work noting

that local steric interactions are critical factors in determining

observed conformational and secondary-structure preferences

(e.g., Dunbrack and Karplus, 1994; Baldwin and Rose, 1999).

Comparison of Trends with Quantum Mechanics
As noted in the introduction, quantum-mechanical (QM) calcula-

tions of isolated alanine peptides (Jiang et al., 1997; Yu et al.,

2001) also produce conformation-dependent trends in bond

angles and bond lengths. The QM calculations are computation-

ally intensive and they have only been carried out at 30� resolu-

tion in F,J (Jiang et al., 1997; Yu et al., 2001), making detailed

features of the trends unavailable. Beyond a certain level, the

method and basis set used in QM calculations is unimportant

to this analysis because they produce trends on the same scale

with a nearly constant offset (Yu et al., 2001). As was reported by

Karplus (1996), the QM results have similar trends, but now it is

apparent that QM results show larger deviations, ranging farther

both positively and negatively than experimental protein struc-

tures. For example, the empirical deviations from the central

value for :NCaC are roughly 70% of the calculated deviations.

Additionally, QM calculations show serious discrepancies in

some less populated regions, such as a false global maximum

for :O-1C-1N in Ld (Figures 2 and 3). The mis-scaling seen in

QM-calculated angles has been suggested by others to be

caused by a lack of long-distance structural effects (Jiang

et al., 1997; Yu et al., 2001; Feig, 2008). However, if that were

the case, comparison of residues in secondary structure versus

those in loops should show this same difference, but Karplus

(1996) did not see a difference, and here we confirm that obser-

vation (Figures S10 and S11). One potential underlying cause is

the difference between a protein environment and vacuum rather

than a long-distance effect caused by repeating secondary

structure, but the reason that calculations in small peptides fail

to predict the correct details of conformation-dependent geom-

etry for proteins is uncertain.

Local Variations Make Structural Sense
The bond-angle trends for five classes of residues for all F,J

possibilities comprise a massive amount of information that

cannot be exhaustively described in the context of this article.

A survey of the results, however, reveals a general principle

that the observed trends in geometry make structural sense in

terms of accommodating local steric and electrostatic interac-

tions, extending the rationale for observed conformations

proposed by Ho et al. (2003). In Karplus (1996), the behavior of

:NCaC in the well-populated a, b, and d regions (Figure 2)

was rationalized in these terms, including the proposal of a

p-peptide interaction in the d region optimized by the opening

of :NCaC (see Figure 8 of Karplus, 1996). Instead of rehashing

those observations, here we present four illustrative examples of

F,J regions with significant distortions. The conformations are

shown in Figure 2, the relevant bond-angle values can be seen

in Figure 3, and the specific collisions being ameliorated are

illustrated in Figure 6.

In the La/Ld region, non-Gly residues are disfavored because

when using single ideal values for bond angles and lengths, there
All rights reserved
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Figure 3. Conformation-Dependent Variation in

Bond Angles of General Residues as a Function

of the F,J of the Central Residue

A Ramachandran plot is shown for each backbone bond

angle in the two peptide units surrounding the central

residue of the tripeptide. The seven unique peptide bond

angles are associated with either residue �1, 0, or +1

based on which residue contributes at least two atoms

to the angle. F and J in each plot, however, refer to the

central residue, 0. Within each plot, colors indicate aver-

ages ranging from the global minimum (blue) to the global

maximum (red) as calculated using kernel regressions (see

Experimental Procedures). The global minima and maxima

are provided in each plot. Figure created with Matlab.
Structure 17, 1316–1325, October 14, 2009 ª2009 Elsevier Ltd All rights reserved 1319
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is a close-contact collision between O-1 and CbH. As F

increases, this collision becomes worse. The conformation-

dependent trends show that these conformations become

accessible by a systematic increase in :O-1C-1N, :C-1NCa,

and :NCaCb that opens the ring between O-1 and Cb. At the

extreme tip of the region near (+90�, 0�), these angles open

compared with the EH values (Figure 1) by 0.4�, 4.3�, and 2.8�,

respectively, to increase the O-1.Cb distance from 2.59 Å to

2.85 Å. Although this change in distance is small, as are others

described in this section, they can make large energetic differ-

ences by transforming unfavorable atomic clashes to close

contacts.

The II0 region is adopted by the i+1 residue of type II0 turns—

a tight turn with a hydrogen bond between O-1 and N+2H. In

this conformation, Cb is quite close to both O-1 and N+1, which

results in this region being unfavorable for nonglycine residues.

Under the rigid-geometry approximation, the entire region

should be disallowed because of this clash, but distortions in

covalent geometry allow it to be accessible. The variations

seen in Figure 3 show that the distortions relative to EH values

(Figure 1) include a large opening in :CbCaC (5.9�) as well as

opening of :CaCN+1 (3.3�) to reduce the Cb.N+1 clash. This

also reduces the O-1.Cb clash, where the :CbCaC distortion

acts like opening jaws to move Cb away from O�1. The extreme

bond openings are enabled by a closing of :NCaC (2.5�),

:CaCO (1.8�), and :OCN+1 (2.0�). The Cb.N+1 distance

increases from 2.65 Å to 2.71 Å, and the O�1.Cb distance

increases from 3.06 Å to 3.09 Å.

Left of the d region is a Ramachandran-allowed but sparsely

populated region. The primary clash is between HN and HN+1.

This clash is prevented through a combination of distortions rela-

tive to EH values: the dominant increases are in :NCaC (3.5�)

and :CaCN+1 (2.8�) that both exhibit their extreme values

Table 1. Observed Ranges for Peptide Bond Angles

Residue Angle EHa Min(CDL) Max(CDL) Range s(EH) s(CDL)b

�1 :NCaC 111.0 107.0 112.5 5.5

:CbCaC 110.6 108.5 111.5 3.0

:CaCO 120.1 119.3 121.2 1.9

:CaCN+1 117.2 115.3 117.6 2.3

:OCN+1 122.7 121.8 123.5 1.7

0 :C-1NCa 121.7 120.0 126.0 6.0 1.8 1.7

:NCaCb 110.6 109.0 114.0 5.0 1.7 1.6

:NCaC 111.0 107.5 114.0 6.5 2.8 1.5

:CbCaC 110.6 109.5 116.0 6.5 1.9 1.8

:CaCO 120.1 118.5 122.0 3.5 1.7 1.3

:CaCN+1 117.2 114.5 119.5 5.0 2.0 1.3

:OCN+1 122.7 121.0 123.5 2.5 1.6 1.3

+1 :C-1NCa 121.7 120.5 122.7 2.2

:NCaCb 110.6 109.8 111.2 1.4

:NCaC 111.0 109.5 112.5 3.0

All values are in degrees. CDL indicates the conformation-dependent

kernel regressions from this work.
a Values are from Engh and Huber (2001).
b Values are typical for the majority of the plot, although they are greater in

the least populated regions. See Figure S5 for details.
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(Figure 3), coupled with a decrease in :CaCO (2.0�). The

combined effect is to open and twist a nearly planar ring between

NH and N+1H to prevent a van der Waals overlap by increasing

the HN.HN+1 distance from 1.78 Å to 1.92 Å and the N.N+1

distance from 2.66 Å to 2.76 Å.

As a final example, we illustrate the importance of treating pre-

Pro as a special residue type. Preproline residues are classically

disallowed in the a region, yet they are experimentally observed

with low populations (Hurley et al., 1992). The primary clash

occurs between N and Cd+1 with a secondary clash between

CbH and Cd+1H (Figure 6). To alleviate this clash, the Pro ring

bends away from the pre-Pro residue through increases in

:NCaC (2.0�), :CbCaC (2.4�), and :CaCN+1 (3.3�), enabled by

decreases in :CaCO (2.3�), :OCN+1 (2.6�), and :CN+1Ca+1

(3.8�). In comparison to calculations by Hurley et al. (1992) that

suggested a single, very large deviation of 8.5� in :CbCaC,

here we observe that the distortions have diffused across all of

the angles between the sterically hindered atoms. These distor-

tions increase the N.Cd+1 distance from 2.65 Å to 2.85 Å and

the CbH.Cd+1H distance from 1.86 Å to 1.90 Å to reduce the

van der Waals overlap. :CN+1Cd+1 was not included in the data-

base, but we expect it also opens to further alleviate the collision.

A 10� Resolution Conformation-Dependent Library
With the knowledge of these systematic trends comes the

possibility of leveraging them to improve the accuracy of crystal-

lographic refinement and homology modeling. To provide a

convenient form in which the documented systematic variations

can be used in modeling applications, we created a binned

conformation-dependent library (CDL) for distribution. Similar

to the approach taken by Karplus (1996), we divided F,J space

Figure 4. :NCaC Distributions Are Well-Defined and Distinct

Shown are observations from selected 10� 3 10� bins in each of four confor-

mations: a (gray), b (green), PII (blue), and a region left of d at (�125�,�5�) (red).

The y axis range is set to visualize the distributions in non-a bins. Histograms

were calculated using 1� bins and plotted as frequency polygons. Distributions

are visibly separate and thus conformation dependent. Inset: The same plot,

with the y axis range set to display the full height of the a distribution. If not

broken out by conformation, the non-a bins would be indistinguishable from

tails of the a distribution. Figure created with gnuplot and Inkscape.
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into 1296 10� 3 10� bins and calculated the averages and stan-

dard deviations for each bin for each of the five residue-type

categories (Gly, Pro, pre-Pro, Ile/Val, general). This first-genera-

tion CDL (v1.0), available from the authors or at http://

proteingeometry.sourceforge.net/, uses a simple precalculated

lookup table that accepts conformations and returns the appro-

priate target value for each bond angle and length. When consid-

ering crystallographic refinement and homology modeling, it is

important to note that using more accurate CDL values in place

of EH values does not increase the number of variable parame-

ters used in the modeling.

Conformation-Dependent Angles Are More Accurate
A variety of simple control calculations can be carried out to

show that the CDL is an improvement over the single-value para-

digm (EH values) and even context-dependent values derived

from molecular mechanics (MM) force fields. Because an MM

force field allows bond angles and lengths to vary with conforma-

tion, it could in theory provide better conformation-dependent

values than the empirical approach.

As one simple assessment, we compared how well the

:NCaC values in a 1.15 Å ribonuclease structure (Protein Data

Bank [PDB] code 1rge; Sevcik et al., 1996) matched with EH

values, the CDL, and bond-angle values from the structure after

minimization using a MM force field (see Experimental Proce-

dures). As seen in Figure 7, the conformation-dependent library

outperforms both the single ideal value and MM. Importantly, the

CDL produces more angles with very close (<1�) agreement with

Figure 5. Conformation-Dependent Variation in Bond Lengths Is

Partially Masked by Experimental Uncertainty

Ramachandran plots are shown for average lengths and standard deviations

of the C = O bond (left panels) and the C-N bond (right panels) using colors

as in Figure 3. These bonds are involved in the partial double-bond character

of the peptide bond, so the expectation is for them to be anticorrelated as elec-

tron density shifts between them. Some such anticorrelation is visible as a

J-dependent effect in averages (shown in the top panels) but it is not as clear

as trends seen in bond angles, possibly because the standard deviations

(shown in the bottom panels) are near the level of experimental uncertainty.
Structure 17, 1316–
the reference crystal structure as well as fewer extremely large

deviations. In terms of modeling accuracy, there appears to be

no downside to using the CDL.

For a more thorough comparison of the CDL with EH values,

we compared how well each matched the :NCaC values for

the set of protein structures used to generate the CDL, with

each protein jackknifed out during its comparison. Averaged

over the whole data set, the median deviation from the native

bond angles for the EH single-value paradigm was 1.5�/residue

and the median deviation for the CDL dropped to 1.1�/residue.

This amounts to an improvement of �25% in :NCaC accuracy

relative to the old paradigm.

To understand the impact this difference could have upon

protein modeling, coordinates for each jackknifed structure

were rebuilt from torsion and bond angles using EH or CDL

values. Holmes and Tsai (2004) have shown that the replacement

of experimental bond angles with ideal ones while holding F and

J fixed shifts coordinates by an average of 6 Å (unnormalized by

protein length), and this limits model-building accuracy. Here,

applying the same approach, we find that the median Ca

rmsd100 (root-mean-square deviation; normalized to the length

of a 100-residue protein) from the native structure for EH values

Figure 6. Structural Basis for Geometry Variations of Selected

Conformations

Four Ala residues with adjacent peptides are shown, built using EH values and

with dots showing van der Waals overlap between atoms: blue (wide contact),

green (close contact), yellow (small overlap), and red (bad overlap). Clockwise

from top left: tip of the La/Ld region; left of the d region; a pre-Pro–Pro dipep-

tide in the a region; and the II0 region. Arrows indicate angles that open or close

substantially relative to EH values. Note that all of these distortions serve to

alleviate atomic clashes. The overlaps were calculated by MolProbity (Davis

et al., 2007) and are shown in Coot (Emsley and Cowtan, 2004).
1325, October 14, 2009 ª2009 Elsevier Ltd All rights reserved 1321
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was 3.23 Å, and for CDL values it was 2.85 Å. The CDL produced

a significant improvement in the Ca rmsd100 of �0.4 Å over the

old single-value paradigm.

Potential Applications: Crystallographic Refinement
and Homology Modeling
To assess the potential impact of accounting for F,J-dependent

variations upon X-ray crystal structures at various resolutions,

we evaluated how much the experimental :NCaC values devi-

ated from those in the CDL as a function of resolution (Figure 8).

To avoid bias, none of the structures used in the survey were

used in the generation of the CDL. Analysis of the data shows

that for structures solved at near 1 Å resolution, the rmsd of

:NCaC from the CDL is �1.6�. This matches well with the stan-

dard deviation seen in the CDL for this angle and serves as an

effective validation of the CDL. Additionally, the small standard

deviation of the rmsds at this resolution shows that each of the

individual high-resolution structures is well-described by the

CDL. Already at a resolution of 1.5 Å, normally considered very

high resolution, the match of :NCaC values to the CDL is nearly

twice as poor as for the 1.0 Å resolution structures. This loss of

accuracy became steadily more pronounced in lower-resolution

structures, rising to nearly 4� at 3.0 Å resolution. We conclude

that by using the CDL, high-, medium-, and low-resolution struc-

tures could all be improved. We suspect that at resolutions

worse than 3 Å, the CDL would have less impact because dihe-

dral angles would be less reliable.

To understand the potential benefit of accounting for

F,J-dependent geometry variations in predictive modeling of

protein structure, we carried out a test using the Rosetta

Figure 7. CDL :NCaC Values Match Ultrahigh-Resolution Struc-

tures Best

Deviations of predicted angles from the experimental ones for atomic-resolu-

tion ribonuclease (PDB code 1rge; Sevcik et al., 1996) with various methods

are shown: EH single ideal values (green), molecular mechanics (blue), and

the CDL (red). Results are shown in a histogram-like manner using 1� bins

and frequency polygons. Of these three methods, the CDL matches best, fol-

lowed by molecular mechanics, then single ideal values. Figure created with

gnuplot.
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modeling program (Rohl et al., 2004). A standard control calcu-

lation for homology modeling is to ask how far a crystal structure

moves from the experimental structure when minimized by the

force field. This provides a lower limit on how accurately a struc-

ture can be predicted (e.g., Bradley et al., 2005). For our test, we

performed a series of 100 Monte Carlo energy minimizations

starting with different random seeds using both native and

‘‘ideal’’ bond geometries for two ultrahigh-resolution protein

structures: ribonuclease chain A at 1.15 Å resolution (PDB

code 1rge; Sevcik et al., 1996; Figure 9) and the PDZ domain

of syntenin at 0.73 Å (PDB code 1r6j; Kang et al., 2004; data

not shown). ‘‘Native’’ geometry refers to the bond lengths and

angles as seen in the crystal structure. As seen in Figure 9A, mini-

mizations using the ‘‘native’’ bond geometry instead of the ideal-

ized geometry resulted in better convergence (tighter grouping)

and allowed the minimized structure to be about 30% closer to

the true structure (�0.6 Å versus �0.9 Å). One notable feature

is that the improved behavior occurs despite the force field’s

optimization based on the traditional ‘‘ideal’’ geometry values.

We conclude from this that the use of the rigid-geometry approx-

imation with standard single ideal values limits modeling

accuracy substantially. Thus, it is worthwhile to adapt modeling

programs to account for the new conformation-dependent

geometry paradigm.

To pinpoint exactly where in the structure the improvements

occurred, we calculated the deviations between the crystal

structure and the energy-minimized structures using native

versus ideal geometry (Figure 9B). As an indication of the varia-

tion that can occur for this protein in two environments, the

deviations with chain B from the same structure are also shown.

The largest differences between EH and experimental geometry

occur in loops rather than regular secondary structure

Figure 8. :NCaC Deviation of the CDL Values from Crystal Struc-

tures as a Function of Resolution of the Analysis

At each of five resolutions ranging from 1.0-3.0 Å, the :NCaC rmsds from the

CDL were calculated for 50 nonredundant structures. The distributions of

rmsds at each resolution are shown. The thickness of the black line indicates

the standard error of the mean, and the thickness of the gray line indicates the

standard deviation. Figure created with gnuplot.
All rights reserved
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Figure 9. Energy Minimization Behaves Better Using Experimental Geometry as Opposed to the Rigid-Geometry Approximation

(A) Shown are 100 trials minimized with experimental (squares) and with EH (triangles) geometries. They are plotted as Rosetta energy versus the Ca rmsd from the

crystal structure (as calculated by Rosetta). Figure created with gnuplot.

(B) Shown are Ca shifts between the crystal structure chain A and a structure selected from the cluster center using experimental (dashed line) or EH (solid thick

line) geometry, Ca shifts for chain B versus chain A from the same crystal (solid thin line), and a schematic of the secondary structure (using spirals for helices and

arrows for b strands). The crystal structure chain B reflects the differences in the same protein in two environments. Overlays were created using the McLachlan

algorithm as implemented in ProFit by iteratively overlaying structures using a subset of Ca atoms with a maximum per-atom rmsd of 0.1 Å until convergence was

reached. The secondary structure is taken from PDBsum (Laskowski et al., 2005). Figure created with gnuplot and Inkscape.
(Figure 9B). This meets the expectation that the largest system-

atic deviations from single ideal values should occur in parts of

the protein with less observed, more diverse F,J values. This

result was expected because the most highly populated regions

dominate the global averages, resulting in the illusion of single

ideal values assumed in EH, whereas more conformationally

diverse, less populated regions contribute less to the global

average. Importantly, the two loops that were highly improved

by using experimental geometry are at the active site of the

protein, so the accuracy with which they are modeled would

significantly impact the ability of this mock homology model to

provide insight.

Outlook
The studies here show that the dependence of backbone geom-

etry on conformation is unmistakably real, significant, and

systematic, and it has a rational structural basis. These system-

atic distortions in covalent geometry additionally explain how

some conformations are accessible to amino-acid residues

despite being theoretically disallowed by modeling based on

single ideal values for backbone geometry. Extending these

studies to the conformation dependence of the u and c1 torsion

angles will be described elsewhere. The conformation-depen-

dent library we derived from the database represents the first

step toward implementing the new paradigm of ‘‘ideal-geometry

functions.’’ With its much-improved agreement to ultrahigh-

resolution crystal structures, the ideal-geometry functions

provide an intellectually satisfying resolution to the debate

among crystallographers as to what ideal values should be

used during refinement. Also, because the ideal-geometry func-

tions captured in the CDL are simply a highly enlarged set of

immutable ideal values, their use in the place of single ideal
Structure 17, 1316–
values represents no increase in algorithmic complexity. Use

of the CDL thus offers the potential for improved modeling

accuracy in a wide variety of experimentally based and predic-

tive modeling applications without increasing the risk of overfit-

ting.

EXPERIMENTAL PROCEDURES

Data Set Construction

A Protein Geometry Database being developed in our laboratory (http://pdf.

science.oregonstate.edu/) was used to generate our data set of atomic-reso-

lution geometry information. To optimally analyze F,J-dependent geometry

trends, the data set must be large but also have independent and accurate

information about geometry. The plethora of new atomic-resolution protein

structures allowed us to use stringent criteria for independence and accuracy,

yet still have sufficient observations for reasonable statistics. To ensure inde-

pendence, we used the PDBSelect (Hobohm and Sander, 1994) list from

March 2006 to choose protein chains with less than 90% sequence identity

to any other chain in the data set. To ensure high accuracy, we only used struc-

tures determined at 1.0 Å or better. At this resolution, we estimate F and J

dihedral angle accuracy to be better than 3� (see next paragraph). Also, as

in Karplus (1996), to ensure that individual residues used were well-resolved,

we required that all residues in a five-residue segment were all well-ordered,

having B-factors < 25 Å2 for the main-chain average, the side-chain average,

and Cg, and alternative conformations were discarded.

To estimate the experimental uncertainty in F and J for 1 Å resolution struc-

tures, we chose to use a straightforward, empirical approach—randomize and

re-refine a test structure multiple times and then examine the spread of the

dihedral angles among the structures. Specifically, we applied 10 coordinate

randomizations with a mean shift of 0.2 Å using phenix.pdbtools (Adams

et al., 2002) to the coordinates of glutathione reductase at 0.95 Å resolution

(PDB ID 3dk9; Berkholz et al., 2008) and re-refined each in SHELXL (Sheldrick,

2008). Dihedral rmsds for the vast majority of residues were between 1� and 2�.

The 90th percentile of the per-residue rmsds in both F and J was 2.2�, and

the rmsd values of the per-residue rmsds for F and J were 1.7� and 2.4�,

respectively.
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Kernel Regression for the Bond Lengths and Bond Angles

The data value of any structural parameter a of residue i (or of the left or right

neighbor of residue i) can be expressed:

ai = mðfi;jiÞ+ v
1
2ðfi ;jiÞ3i

where m is a regression function, and 3 are random Gaussian-distributed

errors with mean 0 and s = 1:

mðx; yÞ= Eðajf = x;j = yÞ
vðx; yÞ= Varðajf = x;j = yÞ:

In these expressions, E is the expectation value of a and Var is the variance

of a.

To obtain an estimate of m and n, we use a zeroth-order or Nadaraya-Wat-

son kernel regression (Naradaya, 1964) by summing over N data points:

bmðf;jÞ=
P

i = 1;N

Kðfi � f;ji � jÞaiP
i = 1;N

Kðfi � f;ji � jÞ

bvðf;jÞ=
P

i = 1;N

Kðfi � f;ji � jÞðai � bmðfi ;jiÞÞ
2

P
i = 1;N

Kðfi � f;ji � jÞ :

The latter is Varðajf;jÞ, an estimate of the heteroscedastic data variance as

a function of f and j.

The functions K are kernels that weight the data points based on how

far away they are from the query f,j value. Because f and c are angles,

we use the product of two von Mises kernel functions (Mardia and Zemrock,

1975)

Kðf� fi ;j� jiÞ=
1

4p2

1

ðI0ðkÞÞ2
expðkðcosðfi � fÞ+ cosðji � jÞÞÞ:

At large values of k, these functions behave very similarly to Gaussian distri-

butions, except that they are periodic. We investigated several values of k and

plotted the resulting regressions as a function of f and c. We empirically chose

a value of k = 50 to produce distributions that varied smoothly with f and c in

a reasonable way.

The f,j map is not uniformly populated by data points, each of them repre-

senting a single residue backbone conformation. Therefore, for the unpopu-

lated regions of the map, the kernel regression analysis generates nonlocal

estimates of m and n. A query point (f,j) in which we estimate expectation

and variance values of a, can be surrounded by an effective radius r, equal

to half of a bandwidth, b of the kernel function, K. We can count the effective

number of data points, Neff within the radius, r, around any query point. These

points will have an impact on the estimated local values of m and n.

We define the bandwidth, b(k) as a diameter of the circle centered on the

query point (f0,c0) within which the von Mises kernel function integrates to

68.2% (the value of integral of the normal distribution probability density func-

tion within one standard deviation from its center):Z
ffiffiffiffiffiffiffiffiffiffiffi
f2 + j2
p

<bðkÞ

Kðf� f0;j� j0Þd4dj = 0:682:

The bandwidth of the von Mises kernel at k = 50 is approximately 16�.

In order to depict the trends of bmðf;jÞ and bvðf;jÞ, we only plot their esti-

mates at f,c grid points where Neff ðf;jÞR3 within a circle with a diameter

equal to the bandwidth b(k = 50) = 16�.

In the sparsely populated areas of the f,j map the threshold of at least

3 data points within the effective bandwidth may lead to estimates with high

standard errors of mean (SEM). We calculated an estimate of SEM, as

SEMðajf;jÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðf;jÞ

Neff ðf;jÞ

s
:

It is very important to analyze the trends of m and n as a function of f,c

together with SEMðajf;jÞ. The values of SEM will indicate the significance

of the trend in the more sparsely populated areas.
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Creation of the Binned Conformation-Dependent Library

Tocreate a binned CDL foreach residue class,averagesand standard deviations

were calculated in 10�3 10� bins in F,J. . The results were stored in a set of files,

one per residue class. Python scripts provide an interface to the CDL, allowing

easy retrieval of the conformation-dependent values when given a residue

name and conformation. Additional tools building upon this simple interface

are also part of the distributed code, including a tool that will compare the

bond angles and lengths in any PDB coordinate file with CDL values, EH values,

or another PDB coordinate file. The CDL and accessory tools are available under

an open-source license from http://proteingeometry.sourceforge.net/. The CDL

is also available at http://dunbrack.fccc.edu/nmhrcm/.

Molecular Mechanics Calculations

MM-derived context-dependent values for bond angles for two test cases

(PDB codes 1rge [Sevcik et al., 1996] and 1r6j [Kang et al., 2004]) were gener-

ated using the following protocol: the structures were minimized in CHARMM

(Brooks et al., 1983) using the parm_all22_prot force field with the CMAP

correction (Mackerell, 2004) using the GBMV implicit solvent model (Lee

et al., 2003). The protocol used cycles of 100 steps of steepest-descent mini-

mization with heavy-atom restraints of 5, 3, 1, and 0 3 atomic mass kcal/mol/

Å2. Following the last cycle (which had no restraints), 1000 steps of adopted

basis Newton-Raphson minimization were performed, and the typical gradient

root mean square was about 0.05 kcal/mol/Å.

CDL Assessments

Building Ideal Models and Analysis of Nonbonded Interactions

Ideal peptides with EH or CDL backbone geometry were built using PyRosetta

(http://pyrosetta.org/), Python bindings to Rosetta (Rohl et al., 2004). To account

for the length dependence of rmsd calculations (e.g., Holmes and Tsai, 2004), we

linearly rescaledall rmsds to thoseof100-residueproteinsusing theEHrmsdsand

the assumption that rmsds intersect the origin. Based on the linear fit of EH rmsds

versus length produced, we calculated a scaling factor of (0.0332519/100) /

(0.0332519/length). To understand the structural basis of variations between

these theoretical peptides, van der Waals clashes were visually analyzed using

the Coot (Emsley and Cowtan, 2004) interface to MolProbity (Davis et al., 2007).

Crystal Structure :NCaC Angles

Nonredundant structures with a 25% sequence-identity threshold were taken

from PDBSelect (Hobohm and Sander, 1994). Among these, 50 structures

were selected from each of five resolution ranges: 1.0–1.1 Å, 1.5–1.6 Å, 2.0–

2.1 Å, 2.5–2.6 Å, 3.0–3.1 Å. For each residue in these structures, we then calcu-

lated the difference in the observed :NCaC and the CDL value. These were

used to calculate the per-structure rmsds, which were then used to calculate

averages, standard deviations, and standard errors of the mean for each of the

five resolution shells.

SUPPLEMENTAL DATA

Supplemental Data include thirteen figures and can be found with this article

online athttp://www.cell.com/structure/supplemental/S0969-2126(09)00335-9.
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